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Short reads
<300 bp

Long reads
>5kb

Gene

Transcripts

Reads spanning splice junctions

http://www.vib.be/en/training/research-training/courses/Archive_CourseRegistrations/GeneRegulation_Koenig.pdf

No transcript 
assembly required

Complicated and inaccurate
procedures for 

transcript assembly

Short and long-reads in RNA-seq

http://www.vib.be/en/training/research-training/courses/Archive_CourseRegistrations/GeneRegulation_Koenig.pdf


Short and long-reads in RNA-seq

ANXA1 gene expression measurement
Sample A vs Sample B

Short-reads RNA-Seq Long-reads RNA-Seq

… full-length RNA-sequencing … revealed a ~5-fold 
higher number of transcript isoforms than previously 
detected

Mays et al 2019 

Tools for short reads are not good for long reads
Tools for long reads are yet emerging 

(sometime platform-specific, e.g. ToFU for PacBio)
Mays et al 2019 Single-Molecule Real-Time (SMRT) Full-Length RNA-Sequencing Reveals Novel and Distinct mRNA Isoforms in Human Bone Marrow Cell Subpopulations Genes. 2019, 10, 253
ToFU: Gordon et al. 2015 Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing. PLoS ONE 10: e0132628
MISO: Katz et al 2010 Analysis and design of RNA sequencing experiments for identifying isoform regulation Nature Methods 7 1009



Jonathan Göke, The SG-NEx project: nanopore long-read RNA-sequencing of human cancer cell lines
Nanopore Community Webinar, 28Feb 2019

https://globalmeet.webcasts.com/viewer/event.jsp?ei=1227094
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Gene expressions correlate well between short- and long – reads
Transcript expressions do not correlate well

Short and long-reads in RNA-seq

https://globalmeet.webcasts.com/viewer/event.jsp%3Fei=1227094
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Alignment to genome
with gapped aligners

STAR, (r)subreads-align, 
minimap2, GMAP

Alignment to transcriptome
with un-gapped aligners

Bowtie
Transcripts assembly
from genome-alignment
StringTie, Cufflinks, ToFU

De-novo
transcriptome assembly

becoming possible with
long reads

…

Transcripts/genes counts

Alignment-free quantification
Salmon , Kallisto, Sailfish

Differential expression
DESeq2, edgeR, limma-voom, MISO

FastQC, Trimming adaptors
Removing poor bases and reads

Cutadapt, Trimmomatic

RNA-Seq gene expression analysis 
Reads

Functional analysis
GO, Pathways, GSEA

Classification
Signatures, linear models, co-clustering 
Machine learning: Random Forrest, ANN

Counting reads
(r)subreads-featureCounts

RSEM, HTSeq-count



Alignment to genome
with gapped aligners

STAR, (r)subreads-align, 
minimap2, GMAP

Alignment to transcriptome
with un-gapped aligners

Bowtie
Transcripts assembly
from genome-alignment
StringTie, Cufflinks, ToFU

De-novo
transcriptome assembly

becoming possible with
long reads

…

Transcripts/genes counts

Alignment-free quantification
Salmon , Kallisto, Sailfish

Differential expression
DESeq2, edgeR, limma-voom, MISO

FastQC, Trimming adaptors
Removing poor bases and reads

Cutadapt, Trimmomatic

Counting reads
(r)subreads-featureCounts

RSEM, HTSeq-count

RNA-Seq gene expression analysis 
Reads

This slide focuses on
options for short reads.  

Tools and practices for long 
reads are yet emerging

Functional analysis
GO, Pathways, GSEA

This lecture focuses only on
genes differential expression
although statistical principles
could be extended to other

types of counts 

Classification
Signatures, linear models, co-clustering 
Machine learning: Random Forrest, ANN



Sahraeian et al 2017 Nature Communications 8:59 (Fig 6a)

1,001 genes were measured in two samples by RNA-Seq and by qRT-PCR
Advantage  of DESeq2 over edgeR/limma was even stronger in other comparosonns

Spearman rank correlation

RNA-Seq vs qRT-PCR

Comparison of tools for differential expression analysis
in short-read RNA-Seq
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Visual assessment
suggests a trend

Source data Modelling as Normal Distribution
Cholesterol ~ N(𝜇, 𝛿) 

Formal significance assessment
e.g. Student’s test
𝜇1 ≠ 𝜇2 at p < 0.05

Linear Regression Modelling
Cholesterol = a + β ⨉ Age

Significance of β ≠ 0; 
Convenient to add covariates (confounders), e.g.: 

Cholesterol = a + β1 ⨉ Weight + β0 ⨉ Age

Recap of statistical approaches for detecting difference between groups

N(𝜇2, 𝛿2) 

N(𝜇1, 𝛿1) 

Density

Blood
Cholesterol

(continuous)
-∞⟷ +∞

Age 
Group

1

Age 
Group

2

Blood
Cholesterol

(continuous)

Age

β

a

Blood
Cholesterol

-∞⟷ +∞



Why can’t we apply this framework for Differential Gene Expression Analysis ?

Solutions

Problems

2) Low counts do not obey the “Normal” bell-shape distribution because they can’t go below zero

3) The counts are discrete, which is better modelled by a discrete distribution

1) Raw counts in each sample depend on library size (depth of sequencing)

4) Small number of samples does not allow accurate estimation of dispersion (variance)

5) Testing for many genes at a time

1) Normalizing raw counts by the library size (discussed in later)

2) and 3) Choosing an appropriate discrete distribution

4) “Borrowing” data between genes for estimation of dispersion (discussed later)

5) Multiple testing correction (typically FDR)



Poisson distribution

By design describes the random sampling of molecules from a solution with given concentration.  

Exactly matches the counts distribution in the technical replicas of RNA-seq: 
e.g. sequencing of several aliquots from the same library.

https://genome.cshlp.org/content/18/9/1509Marioni et al 2008 RNA-seq: an assessment of technical reproducibility … 

Distribution of random independent events happening at a certain mean rate.
Mathematically, the dispersion(variance) is equal to the mean. 

https://genome.cshlp.org/content/18/9/1509


Overdispersion

Negative Binomial Distribution

Technical variance
i.e. between replicas within library,
described by Poisson distribution

Total variance
Additional variance

e.g. between dishes of the same cell line 
or different tumors of the same type

= +

“Similar” to Poisson: discrete and non-negative.  However, unlike to Poisson allows to model the overdispersion.   

Number of independent attempts until a certain number of successes
Mathematically, allows dispersion larger than mean 

Successfully used to model real-life RNA-seq data (details about the dispersion assessment will be discussed later).

https://academic.oup.com/bioinformatics/article/23/21/2881/372869Robinson and Smyth 2007 Moderated statistical tests …

https://academic.oup.com/bioinformatics/article/23/21/2881/372869


Visual assessment
suggests a trend

Source data
Normalized by library size

Modelling as Negative Binomial
Counts ~ NB(𝜇, 𝛿) 

“Borrow” data for
“adaptive” variance evaluation:

for low number of cases
𝛿(gene) shrinks to 

𝛿(all genes with similar expression)

Generalized Linear Modeling
Log(𝜇) = a + β ⨉ Group

Significance of β ≠ 0
Convenient adding covariates (confounders): 

Counts = a + β1 ⨉ Batch + β0 ⨉ Group

Overview of statistical approaches to Differential Genes Expression analysis

β

X=0
Group 1

X=1
Group 2

Log(𝜇) 

NB(𝜇2, 𝛿2) 

NB(𝜇1, 𝛿1) 

Density

Normalized 
Counts

(discrete)
0 ⟷ +∞

-∞⟷ +∞

Group 1 Group 2

Normalized
Counts

(discrete)
0 ⟷ +∞

Log-link

𝜇1

𝜇2
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Gene-level counts are reasonably close but not identical
between different approaches



For short-reads: 
count reads intersecting with features…

How to intersect ?
Options in htseq library :

http://htseq.readthedocs.io/en/master/count.html

What features to use ?
Transcripts, genes or exons …

For long-reads:
count of transcripts is reasonably natural
read ~ transcript (within reason…)

Caveats in 
getting raw counts …

http://htseq.readthedocs.io/en/master/count.html


Units for read counts : raw counts + RPKM, FPKM, TPM

RPKM = Reads Per Kilobase of the feature (gene) per Million

FPKM = Fragments Per Kilobase of the feature (gene) per Million

https://doi.org/10.1007/s12064-012-0162-3

Number of fragments mapped for transcript x Average fragment length x 106

Length of transcript x Number of transcripts in sample
TPM =

Number of reads (fragments) mapped for transcript x 103 x 106

Transcript length x Number of reads (fragments) mapped in sample 
R(F)PKM =

Accounts for transcript and library sizes

Currently recommended unit

Historically used units

TPM = Transcripts Per Million

https://doi.org/10.1007/s12064-012-0162-3


Units for read counts : raw counts + RPKM, FPKM, TPM

RPKM = Reads Per Kilobase of the feature (gene) per Million

FPKM = Fragments Per Kilobase of the feature (gene) per Million

https://doi.org/10.1007/s12064-012-0162-3

Number of fragments mapped for transcript x Average fragment length x 106

Length of transcript x Number of transcripts in sample
TPM =

Number of reads (fragments) mapped for transcript x 103 x 106

Transcript length x Number of reads (fragments) mapped in sample 
R(F)PKM =

Accounts for transcript and library sizes

Currently recommended unit

Historically used units

TPM = Transcripts Per Million

Raw counts are needed

for Differential Expression

analysis !

https://doi.org/10.1007/s12064-012-0162-3


Different tools provide counts in different formats

Salmon
Separate text file for each sample
in a folder with meta-information

…

HTSeq
Separate text file for each sample

…

(r)subreads
featureCount

Matrix of counts with
Genes in rows and

Samples in columns
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https://www.gencodegenes.org https://www.ensembl.org https://www.ncbi.nlm.nih.gov/refseq/

Sources of Genes Annotations

https://www.gencodegenes.org/
https://www.ensembl.org/
https://www.ncbi.nlm.nih.gov/refseq/


GFF / GTF: file format for genes annotations

GTF files can be conveniently red into R data-frame using readGFF() function from rtracklayer package
(see example in the practical session)

https://www.ensembl.org/info/website/upload/gff.html

http://genome.ucsc.edu/FAQ/FAQformat.html#format3

https://www.ensembl.org/info/website/upload/gff.html
http://genome.ucsc.edu/FAQ/FAQformat.html
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Design formulas in R models

Note that the “group” is a Factor with base level “A”.
This level will be used for the intercept (also called “reference” level).

A simple design: Is the mean tumour size different between two groups ?

The “design formulas” are text strings, used to describe the required analysis for edgeR and DESeq2. 
For simplicity, we will illustrate some “design formulas” using lm() function as an example.  

Exactly the same “formulas” could be used for edgeR and DESeq2.



Is a mean tumour size different between two groups ?

Intercept =
the mean size of tumours

in Group A

The Intercept = size of tumours
In Group A is significantly 

different from 0

The difference between
the mean size of tumours

in Group B and the intercept

The difference between
Group B and the intercept

is significantly different from 0

size ~ group
Design formula

Fit a linear model using ” formula” to specify the model’s “design”



1) Coding the groups as 0 and 1 and (making “design matrix”)
2) Fitting an Intercept (default: the group with the base level in the factor)

3) Calculating the slope (β)

Behind the scene

β

X=0
Group A

X=1
Group B

Intercept = 
𝜇 (Group A)

𝜇 (Group B)

Group

Size = Intercept + β * Group

Size



Setting Intercept in R linear models

Default: 
implicit modeling with intercept

“Y ~ Group” in fact means “Y ~ Intercept + Group”

Overriding the default:
explicit modeling without intercept

Y ~ 0 + Group



Default: 
implicit modeling with intercept

“Y ~ Group” in fact means “Y ~ Intercept + Group”

Significance of β ≠ 0

Setting Intercept in R linear models

Overriding the default:
explicit modeling without intercept

Y ~ 0 + Group

Significance of β1 ≠ 0 or β2 ≠ 0

Look at the difference of mean values 
between Group A and Group B

Look at means in both groups: 
whether each is different from zero

β

X=0
Group A

X=1
Group B

Y

Intercept = 𝜇A

𝜇B

β1

Y

Intercept for
both groups = 0

β2

𝜇A

𝜇B

X=1
for both groups

Understand what you are asking for ...

Hmm… 

This is interesting …

But this is NOT what we 

have been looking for !

Don’t override the defaults without asking a statistician ….



Design with a confounder (batch effect)
What if we measured the tumour sizes over two days, and on the second day we had a different calibration, 

so all the measurements on the second day somehow went higher?

We can see clearly the differences between groups within each day … 
However, how to combine the data over both days (batches) ?



Formula without batch correction

size ~ group
No significant

association between
Group and Size

size ~ day + group

Formula with batch correction

Detected an
association between

Group and Size

Including batch correction in the design formula



Including covariates / confounders in the design formula

size ~ day + groupResponse
(dependent variable)

Predictors
(independent variables)

The factor
of intertest

Confounder

By convention, the factor of interest
is placed at the end of the formula

Is a treatment significantly associated with change in  blood pressure, controlling for age and ethnicity?

blood_pressure_change ~ age + ethnicity + treatment

The previous example in more detail

Other examples

Is a gene are differentially expressed in different types of tumour, controlling for batch and sex?

tumour_type ~ batch + sex + gene



Design with an interaction

Consider an imaginary experiment: 
We start treatment of breast tumours in mice when they reached a certain size (e.g. 1cm).  

Then we record the size after one week of treatment, and information about the type of tumour (ER-pos or ER-neg) 
and about the type of treatment (Tamoxifen or Placebo). 

May one factor change the response to another ?

We expect that ER status modifies the response to tamoxifen:
• ER-positive tumours should shrink upon Tamoxifen treatment while

• ER-negative tumours should keep growing 



Including interaction in the design formula

Formula without interaction

size ~ er + tamoxifen

No significant
Size change associated
with Tamoxifen or ER

alone
size ~ er * tamoxifen

Formula with interaction
Significant

Size change because
of interaction between

Tamoxifen and ER



Another example of interpreting design formulas

RNA-seq was used to measure genes expression in three squamous cell carcinoma patients.
Tumour and paired Normal tissue was available for each patient.
Three types of model design was considered in the study:

McCarthy et al, 2012: Differential expression analysis of multifactor RNA-Seq experiments …
https://academic.oup.com/nar/article/40/10/4288/2411520

https://academic.oup.com/nar/article/40/10/4288/2411520


For simplicity, we illustrated design formulas using lm() function.  However, many other R functions and packages,
including glm(), edgeR and DESeq2 use the same way of specifying the design of analysis.

The design formula summary

• At the right side of the formula:

• The “predictors” include:

• Be aware about the reference level within the variable of interest (by default, the “base” level in the factor)

• Be aware about complex designs, such as designs with interactions, designs without intercepts. 
Other complex analyses may use user-defined contrasts etc.  Ask a statistician if you consider using complex designs.  

The “Response” variable = “Dependent” variable (e.g. Size in the above examples) • At the left side of the formula:

“Predictors” = “Independent” variables (e.g. Day, Group etc in some above examples)

- The variable of interest (e.g. Group in some above examples)

- Confounders / covariates, which effect should be “controlled for” 
(e.g. Day in the batch effect example)

• By convention, most of the packages expect the variable of interest at the end of the formula 
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DESeq2 Data-Set

https://bioconductor.org/packages/release/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html

samples
ge

ne
s Assay slot(s)

for Counts
and other data

colData slot
for samples data

(e.g. ID, diagnosis etc)
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Design slot
y ~ a + b

edgeR DGEList

A list containing 3 synchronized objects:

• Samples data frame 
• Genes data frame
• Counts matrix

Although is not implemented
as Summarized Experiment

provides similar functionality

Internal representation of data in DESeq2 and edgeR

A modified Summarized Experiment

https://bioconductor.org/packages/release/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html


Import functions and packages

readDGE function in edgeR
Makes a single matrix from multiple text files of arbitrary format, as long as the file contains columns with 
genes names and counts.  Allows to add samples information etc.  See example in the practical session.  

https://master.bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html

DESeqDataSetFrom -Matrix, -HTSeqCount and -Tximport functions in DESeq2
Allow convenient import from matrix (Rsubread), HTSeq counts and from Tximport package respectively.

https://www.bioconductor.org/packages/devel/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html

Tximport package
Facilitates import from Salmon, Kallisto and some other tools to DESeq2 or edgeR. May summarize transcripts to genes.

https://bioconductor.org/packages/devel/bioc/vignettes/tximport/inst/doc/tximport.html

Tximeta package
Currently facilitates import from Salmon to DESeq2, May summarize transcripts to genes.

Adds meta-data, including genes annotation in Genomic Ranges format.
https://bioconductor.org/packages/release/bioc/vignettes/tximeta/inst/doc/tximeta.html

https://master.bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://www.bioconductor.org/packages/devel/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html
https://bioconductor.org/packages/devel/bioc/vignettes/tximport/inst/doc/tximport.html
https://bioconductor.org/packages/release/bioc/vignettes/tximeta/inst/doc/tximeta.html
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Initially, a naïve normalization was suggested by the library size itself.  However, later it was observed that, with such 
naïve normalization, a strong over-expression of some genes might be mis-interpreted as down-regulation of all the other genes: 

Normalizing by library size

http://genomebiology.com/2010/11/3/R25Robinson and Oshlack 2010: A scaling normalization method for differential expression analysis of RNA-seq data

http://genomebiology.com/2010/11/3/R25


In contrast to some “normalized” units used for for RNA-seq counts representation (FPKM or TPM), 
TMM or Median of the Gene Ratios do not account for the gene/transcript length.

This implicitly assumes that the gene/transcript length does not change between the studied conditions.
Although such assumption looks reasonable for Differential Genes Expression analysis on short-read data,

changes in size of used transcripts may be incorporated in the modelling later. 

TMM and Median-of-Ratios 

To avoid such undue influence, edgeR excludes extremely expressed and extremely changed genes when calculating
the normalization factors.  The method is called “trimmed mean of M values” (TMM)

http://genomebiology.com/2010/11/3/R25
Robinson and Oshlack 2010: A scaling normalization method for differential expression analysis of RNA-seq data

TMM and Median of the Gene Ratios do not normalize by gene length

For the same purpose, to avoid the undue influence of extremely changed genes, DESeq2 takes Median of the Genes Ratios
to estimate the size factors.  The statistical properties of the median negate the effect of extremely changed genes.  

http://genomebiology.com/2010/11/10/R106
Anders and Huber 2010: Differential expression analysis for sequence count data

http://genomebiology.com/2010/11/3/R25
http://genomebiology.com/2010/11/10/R106
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Variance-stabilizing transformations to explore source data 

It is a common practice to perform unsupervised clustering of samples using all (or most variable) genes
before the Differential Gene Expression analysis.  Such exploration may suggest gross outliers, to exclude from analysis. 

Also, it shows whether the studied groups are well separated in the gene expression space.  

The most common methods for samples clustering include Principal Component Analysis (PCA) and Hierarchical Clustering.
However, it has been empirically observed that variance in RNA-seq counts is higher in the highly-expressed genes

(heteroskedasticity of RNA-seq counts).  Thus, PCA and Hierarchical Clustering might be dominated by the most expressed 
genes if the data are not transformed to make variance similar between the genes (make transformed data homoscedastic). 

Both edgeR and DESeq2 provide transformations and plotting functions to facilitate the exploratory analysis: 

edgeR DESeq2

Transformation(s) Log(counts per million) VST (Variance-Stabilizing transformation)
rlog (regularized log-transformation

Plotting function plotMDS*() plotPCA()

* MDS stands for Multi-Dimensional Scaling: this is aprocedure very similar to PCA



vst

Variance-stabilizing transformations to explore source data 

These transformations are used only to explore source data
They are NOT used during the Differential Expression Analysis



Examples of PCA and MDS plots

These plots will be generated during the practical session (along with Hierarchical Clustering and Heatmap lots).  
The plots don’t suggest any gross outliers to exclude.  Also they suggest that some of the studied groups 

are clearly separated in the gene expression space. 

edgeR: MDS plot
(Log-cpm)

DESeq2: PCA plot
(vst)
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Dispersion estimation and adjustment

Love et al 2014: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8

1. Observed dispersions (●) are used to estimate 
Mean dispersions (●) for each level of expression. 

2. Depending on the accuracy of the Observed dispersions 
they may be “Shrunken” (●) toward the Mean estimates.  
The more accurate is the observed dispersion, 
the less “shrinkage” will be applied. 

3. If the Observed dispersion extremely deviates from Mean
(outliers encircled in blue) it does not shrunk. 

Simplified description of the procedure applied by DESeq2 :

Observed
Mean           
Shrunken

If dispersion for each single gene can not be accurately estimated 
because of a small number of samples (e.g. less than 10 replicates) 
then the data from other genes will be “borrowed”.

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8


Dispersion estimation and adjustment

Dataset with small number of samples.
Many dispersions are shrunken toward the mean.

Dataset with large number of samples.
Most dispersions are not shrunken toward the mean.
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It is a commonly accepted assumption that in most of experiments only a minority of genes change their expression.  
Thus, usually, the proportion of suggested Differentially Expressed Genes should not exceed 20%.  However, in our practical 

session the default DESeq2 settings would suggest that about 60% of all genes are differentially expressed …
This is obviously an absurd result: the problem is in the default thresholds applied by DESeq2. 

By default DESeq2 performs testing for any fold change at FDR < 0.1.  

Such settings reflect the time, when RNA-seq was prohibitively expensive and experiments often included less than 10 samples.  
Our practical session analyses more than 200 samples.  For such datasets, DESeq2 allows to change the analysis thresholds.  

Thus, when we consider only genes with at least 2-fold change at FDR < 0.01, the proportion of suggested DEGs got below 10%.  
edgeR also allows testing for non-zero Fold-Change (see practical session for examples).  

Importantly, testing against non-zero FC threshold is not the same as filtering by FC of the results obtained with default settings.  

Default thresholds in DESeq2



Testing against non-zero FC thresholds

Love et al 2014: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8

Genes with at least 2-fold change Genes with less then 2-fold change

MA-plots show Fold-Change (Y-axis) against Mean expression (X-axis) for individual genes; red shows significance 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8


Fold-Change (FC) adjustment in low-expressed genes

Removal of low-expressed genes before calculating FDR 

Additional features in DESeq2 

Noise may simulate high Fold-Changes in low-expressed genes.  To avoid this artificially inflated “Changes”
DESeq2 uses an empirical algorithm that ”shrinks” fold change in the genes with low expression.

DESeq2 automatically removes genes with low expression, applying adaptive threshold that maximises number of genes
passing FDR.  For the genes filtered out at this stage, NA is placed in the p-adjusted column.  

Without FC adjustment With FC adjustment



Example of Volcano plot

Result from the practical session

Volcano-plot shows Significance (Y-axis) against Fold-Change (X-axis) for each gene.
Genes could be coloured according to FC and Significance thresholds

Log2(Fold Change)

-L
og

10
(a

dj
 p

)

TCGA-BRCA: ER-pos vs Triple-neg 
FC > 2, FDR < 0.01
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Step edgeR DESeq2

Normalizing by library size Trimmed Mean of M-values Median of the Genes’ Ratios

Distribution Negative Binomial Negative Binomial

Dispersion for a gene An empirical custom procedure 
accounting for (i) dispersion over all 

genes, (ii) dispersion in the genes with 
similar expression and (iii) dispersion 

observed in the gene 

An empirical custom procedure 
accounting for (i) dispersion in the genes 

with similar expression and (iii) dispersion 
observed in the gene 

GLM Log-link
optimized algorithm for convergence

Log-link

Significance test Log-likelihood ratio Wald test

Multiple testing correction FDR FDR

Statistical features of edgeR and DESeq2



Step edgeR DESeq2

Internal data format Customized list: DGEList Modified Summarized Experiment

Data import
Data import function from a set of 

text files containing columns for 
gene-ID and gene-Counts

- Advanced import options are provided by 
tximport and tximeta packages

- DESeq2 includes data import functions from 
different upstream tools (tximport, HTSeq, matrix)

Low-expressed genes
A function for 

filtering by low expression 
(applied before analysis)

- Automatic exclusion of low-expressed genes 
from multiple testing

- Adjusting Fold Change for low-expressed genes

Testing against non-zero 
fold change (FC) Yes Yes, with an opportunity of testing for 

FC below or above the Threshold 

Detecting counts outliers No Count outliers are detected and taken into account 
when calculating FC, p and when filtering genes

Data exploration 
functions

Log(counts per million)
MDS plot

Variance-Stabilising transformation (VST)
Regularized log-transformation (rlog)

PCA plot

Accessory features of edgeR and DESeq2



Example of DEGs detected by DESeq2 and edgeR

Result from the practical session
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Practical session

• Using open-access RNA-seq data for several hundred samples from TCGA dataset the tutorial will 
provide step-by step instructions on how to detect genes differentially expressed between 
Estrogen-Receptor-positive and Triple-negative breast cancers.

• During the practical session you will
• Import HTSeq counts to DESeq2 and edgeR data formats
• Add information about the samples and genes
• Remove consistently low-expressed genes 
• Perform normalization to account for library sizes
• Explore source data using PCA and MDS plots, perform Hierarchical Clustering and make 

Heatmap plot to show clustering of samples and genes 
• Identify Differentially Expressed Genes with at least 2-fold difference at FDR < 0.01
• Explore plots of the dispersion estimates and adjustments
• Explore MA- and Volcano plots for the Differentially Expressed Genes

• The equivalent analyses will be performed by DESeq2 and edgeR, and the results will be compared 
between these packages


