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Abstract  

Breast cancer is the most frequent cancer in women in developed countries.  Endocrine 

treatment is indicated to the majority of breast cancer patients.  However, in some cases 

it does not work despite the current clinical indications.  Eventually the resistance may 

develop in many of those who initially respond.  Re-analysis of available breast cancer 

transcriptomic datasets using new multi-gene signatures associated with endocrine 

resistance may help to understand and overcome endocrine resistance.  The goal of this 

project was to develop a bioinformatics pipeline to (i) select endocrine resistant cases 

from the available breast cancer datasets and (ii) classify the selected cases by multiple 

multi-gene signatures.   

The pipeline has been successfully designed and applied for classification of endocrine-

resistant samples from 9 breast cancer datasets using 7 transcriptional signatures.  The 

obtained results have been presented in a dedicated web site.  The pipeline consists of: 

¶ Procedures for a manually curated selection of relevant datasets and signatures; 

¶ Procedures for semi-automatic data pre-processing, allowing cross-platform analysis; 

¶ A new, fully automated, classification algorithm (Iterative Consensus PAM). 

The main features of the developed classification algorithm include:  

¶ It is based on un-supervised partitioning; 

¶ It allows for ñnon-classifiableò samples; 

¶ The procedure does not require a training set; 

¶ The procedure can be used in a cross-platform context (Affymetrix & Illumina). 

The developed pipeline and web site may constitute a prototype for a future web-hub 

collecting (i) data on endocrine-resistant breast cancer specimens, (ii) collecting multi-

gene signatures relevant to endocrine resistance and (iii) providing tools to apply the 

signatures to the data.  The web-repository could provide a tool to integrate the data and 

signatures and to produce new clinical and biological knowledge about endocrine 

resistance in breast cancer.    
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1 Introduction  and Literature Review  

The reanalysis of publicly available bioinformatics datasets may provide an important 

source of new knowledge.  Modern biological methods produce vast amounts of data 

that can be analysed from different perspectives.  Authors originally conducting a study 

usually focus their analysis on a specific question that can be addressed using 

bioinformatics resources available at the time.  New bioinformatics tools may open new 

ways to re-analyse the same data.  New datasets, collected within similar context, may 

allow comparison between the previously available and newly published studies.  

Further development of biology may generate new biological questions that can be 

answered using the old data.   

While having a great potential, the comparison and re-analysis of already published 

datasets has its challenges.  First of all, the re-analysis requires either an appearance of 

new questions that may be addressed using the old data or availability of new methods 

and datasets that may be used in re-analysis.  Second, but equally important, re-

analysing someone elseôs data requires good understanding of these data.  This includes 

a range of questions starting from the general biological context (e.g. criteria for patient 

selection or response assessment) through to the technicalities of the lab methods 

employed (e.g. procedure for tumour biopsy collection or nucleic acid extraction).  

Finally, the complexity of multiple datasets and data analysis features requires special 

attention when presenting the results: ideally the results shall be presented in a concise 

and transparent way, clear for users with clinical or biological backgrounds.   

This project re-analyses available transcriptomic datasets on endocrine-resistant breast 

cancers.  These datasets come from studies focused on the development of prognostic or 

predictive signatures for endocrine treated patients.  While deriving the signatures, 

authors considered the resistant (poor prognosis) patients as a single entity opposed to 

the responsive (good prognosis) patients.  However, breast cancer is well known for its 

molecular diversity.  Endocrine resistance may be caused by different mechanisms with 

distinctive molecular signatures.  Therefore, it may be interesting to re-analyse these 

datasets focusing on the molecular diversity of endocrine resistance, instead of 

considering resistant tumours as a homogeneous group.  The aim of this project is to 
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classify endocrine-resistant tumours from publicly available datasets using known 

multi-gene signatures for different mechanisms of endocrine resistance.  This may allow 

us to suggest the mechanisms causing resistance in individual tumours and to see how 

different mechanisms of resistance are represented in different datasets.   

1.1 Overview of Breast Cancer 

1.1.1 Impact of breast cancer  

Breast cancer affects millions of lives worldwide [1].  About 48,000 women are 

diagnosed with breast cancer and about 11,000 women are dying from breast cancer in 

the UK each year, making it the most common cancer in women [2].   

Average cost of breast cancer treatment in developed world vary between GBP 7.000 - 

35.000 per patient, depending on the country, stage and calculation method [3-5].  

Given the incidence of breast cancer, even the modest estimate amounts to 243 million 

pounds per year spent in the UK for breast cancer care [3].  The total losses, including 

absence from work, production loss and early retirement may result to much higher 

numbers [6].   

1.1.2 Causes of breast cancer 

Breast cancer is caused by a combination of lif e-style, environmental, inherited and 

stochastic genetic factors, which differ in each individual patient.  The main established 

risk factors for breast cancer are summarised in Table 1 [7-9] and discussed below.   

1.1.2.1 Age 

Age is a common risk factor for all major malignancies.  The mechanism of this 

association is not clear.  However, accumulation of DNA damage was associated with 

both ageing and carcinogenesis [10-12].  Taken together with age-associated decline of 

immune response [13], this may explain the higher incidences of cancer in elderly 

people.  It may be noted that rates of the most cancers keep accelerating till the age of 

70.  In contrast, the breast cancer rate declines after 60 years.  This may be explained by 

reduced oestrogen levels and by breast involution in post-menopause.  Alternatively, 

one could consider the opposite: that endocrine disturbance associated with menopause 

may lead to earlier development of breast cancers.  For instance, cessation of the cycle 
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may lead to a prolonged acyclic expression of oestrogen receptors (ERs) in normal 

breast ducts in contrast to their cyclic expression in the reproductive age [14].  

Potentially this could make breast epithelium more susceptible to oestrogen-associated 

tumour promoting events despite the general fall of oestrogens during the menopause.   

1.1.2.2 Reproductive factors and oestrogens 

Risk of breast cancer is strongly associated with a number of reproductive and 

oestrogen-related factors including pregnancy, breast feeding, age of menarche and 

menopause, hormonal contraception and hormone-replacement therapy (Table 1).  

Breast feeding and pregnancy reduce risk of breast cancer through a complex and not 

yet understood endocrine effect on breast tissue rearrangements [15].  In contrast, the 

breast cancer risk associated with early menarche, late menopause and oestrogen-

containing pills may be explained as a direct result of increased exposure of the breast 

to oestrogens.   

Oestrogens play an important role in the development and function of normal breast.  

Specifically, they stimulate proliferation of breast epithelium [16].  Intriguingly, in 

 

Table 1: Main  r isk factors for breast cancer  

 

Factor Relative risk 

Elderly age  > 10 

High breast density on mammogram 6 

Atypical hyperplasia or cancer in other breast  > 4 

High free estradiol in serum 3.6 

Exposure to ionising radiation  3 

First child after 40s 3 

Menarche before age 11 3 

Menopause after age 54 2 

Breast cancer in a first degree relative  2 

Obesity (post-menopausal) 2 

High intake of saturated fat 1.5 

Alcohol consumption  1.3 

Hormone replacement therapy for >10 years 1.3 

Current use of oral contraceptives  1.2 

Obesity (pre-menopausal) 0.7 
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normal breast the cells carrying ERs do not proliferate themselves [16-18].  This led to a 

hypothesis that oestrogen-stimulated ER-positive epithelial cells induce proliferation in 

adjacent ER-negative epithelial neighbours [16-18].  Alternatively, one may suggest 

that normal ER-carrying cells lose ERs when enter proliferation after stimulation by 

oestrogens.  The dissociation between ER-positivity and proliferation is lost during 

breast cancer development: about 75% of breast tumours preserve oestrogen receptors 

on the proliferating cancer cells [19].  This group of tumours is commonly referred as 

oestrogen receptor positive (ER+ve) breast cancer; they have a number of distinctive 

clinical features, such as better prognosis and high responsiveness to endocrine 

treatment.  Noteworthy, the expression of estrogen receptors in ER+ve breast cancers is 

often higher than in normal breast epithelium [20-22].  In  2 to 20% of cases this may be 

explained by the receptorôs gene (ESR1) amplification, depending on the method used 

for amplification detection [23,24].  However, the exact mechanisms regulating 

oestrogen receptor overexpression in the remaining majority of ER+ve breast cancers 

remain unknown yet [20].   

In addition to the proliferative effect through oestrogen-receptor signalling, it has been 

suggested that oestrogens can contribute to breast carcinogenesis through a direct 

mutagenic effect by formation of DNA adducts.  Oestrogens can be converted to 

catechol-oestrogens by p450-mediated hydroxylation in A-ring.  In turn, the catechol-

estrogens may be converted to quinones, which directly bind purinesô residues in DNA, 

resulting in mutagenic DNA adducts (Figure 1, [25]).   

 

Figure 1: Genotoxic effects of oestrogens 
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Theoretically, there is no obvious reason why this genotoxic effect of oestrogens shall 

be limited to breast tissue.  Therefore, if the effect was strong, it might be expected that 

higher life exposure to oestrogens may be associated with higher risk of other, non-

breast malignancies, which has not been reported (except for uterus, which is an 

endocrine-dependent tissue).  At the same time, the risks of the life-long oestrogen 

exposure may be under-studied for methodical reasons.  Measuring life-long exposure 

to oestrogens is not a trivial task: oestrogens fluctuate during the cycle in reproductive 

age and drop below the sensitivity of most commercially available tests in post-

menopause [26].  In addition, the level of bio-available estrodiol depends on 

concentrations of sex-hormone-binding globulin [27].  Even with regard to the breast 

cancer, the methodical difficulties originally led to contradicting results whether the 

blood estrogen is related to the cancer risk [28].  Only measuring of free estradiol in 

large cohorts of patients allowed to detect the link of oestrogens in blood with risk of 

breast cancer [8].   

1.1.2.3 Inheritance  

Familial cases constitute ~10% of all breast cancers [29,30].  However, familial history 

alone does not reveal the whole contribution of inheritance to breast cancer [31].  

Criteria for familial cancer include a number of the affected 1st or 2nd degree relatives 

[32].  This is appropriate for detection of dominant high penetrance alleles.  For 

instance: BRACA1/2 breast cancers have familial history in 27-66% cases, depending 

on the country [31].  At the same time, cancers caused by rare recessive alleles, low 

penetrance variants or complex multi-gene heritable traits will not affect close relatives; 

thus they wil l manifest as sporadic cases despite having the hereditable nature ( 

Figure 2 [31,33]).   

Apart from familial cancers, the hereditable component may be prevalent in multiple 

and bilateral breast cancers, cancers in tweens and in early onset breast cases [30,33-

35].  Estimates for the total contribution of inheritance into breast cancer incidence are 

still controversial.  An analysis of a large tween dataset derived the hypothesis that ña 

high proportion, and perhaps the majority, of breast cancers arise in a susceptible 

minority of womenò [36].  However, a later detailed analysis of the same data 

concluded that ñthe proportion of all breast cancer represented by heritable disease 
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exceeds 15%ò [33].  Whichever estimate is correct, it is clear that even in women with 

established heritable predisposition, the genetic component alone is not sufficient to 

develop the cancer: only 20-30% of the identical tweens will have breast cancer if the 

sister is affected [36,37].  Having two first-degree relatives diagnosed with breast cancer 

increases the individualôs risk by only 13.3% [38].  Carrying any known risk allele is 

neither necessary nor sufficient for breast cancer development (arguably, except for a 

rare combination of several high penetrance genes).  Taken together these observations 

suggest that the inheritance shall be considered as a predisposing rather than a causal 

factor, and that an additional exposure to environmental factors and some additional 

somatic mutations are necessary to develop breast cancer even in women inherited the 

high risk genes.   

 

 

Figure 2: Example of a homozygous recessive inherited condition without familial 

history 

 

 

Note: The figure shows an example of typical family affected by homozygous recessive 

disease caused by a rare allele.  Star [*] indicates the affected family member.  

Complete or partial red shading indicates homo- or heterozygosity for the risk allele.  

No first or second degree relatives are affected despite the heritable nature of the 

disease.   
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Most of the heritable breast cancer susceptibility genes fall into two major categories:  

¶ genome maintenance / tumour suppressor genes or  

¶ endocrine / steroid metabolism related genes.   

Alterations in the genome maintenance genes are usually of high penetrance, which may 

lead to the familial history.  The genes may be involved in DNA damage reception 

(ATM [39]), DNA repair (BRCA1/2, BLM, [40,41]) or response to DNA damage (e.g. 

halting cell cycle or triggering apoptosis: CHK2, P53, [42,43]).   

The endocrine and steroid metabolism genes include genes related to oestrogen 

production and signalling, e.g.: CYP19 (estrogen-synthetase, [44]), COMT (catechol-

estrogen inactivation, [45]) and ESR1 (estrogen receptor alpha, [46,47]).  The effect of 

each steroid metabolism variant taken separately is usually small and limited to ER-

positive tumours [48].  Despite the low penetrance of the individual variants, some 

tween studies suggest that multi-gene endocrine-related traits may constitute a major 

part in breast cancer heritable susceptibility [33].   

There are epidemiological data, indicating that currently known high penetrance 

predisposition genes are responsible for only ~20% of all inheritable risk of breast 

cancer.  The remaining 80% may be caused by a combined effect of multiple low-

penetrance variants.  Linkage studies based on family history cannot detect such genes.  

Genome-wide association studies (GWAS) on large cohorts of patients have been 

suggested to address this issue [49-52].  Interestingly, the GWAS may also be used to 

search for heritable protective traits, not only for the predisposing genes.   

1.1.2.4 Other factors  

Many of the remaining specific risk factors, mentioned in Table 1, may be considered as 

derivatives from the discussed above age, endocrine influences and inheritance.  For 

instance, high breast density may be inherited and may be indicative of exposure to 

endocrine factors and pre-existing breast conditions [53].  Similarly, postmenopausal 

obesity is associated with increased oestrogen exposure through the peripheral synthesis 

of oestrogens in adipose tissue [54].  Interestingly, the pre-menopausal obesity may 

have an opposite effect [55].   
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Marked geographical and social differences in breast cancer rates have not yet been 

satisfactorily explained.  However, at least partially, they may be related to low number 

of children and tendency for later first childbirth in developed world.  Exposure to 

ionising radiation and other established carcinogens increases breast cancer incidences 

in a way similar to their effect on the other cancers. 

1.1.3 Diversity of breast cancer  

Several types of tumours can originate from the breast [56-59].  These types have 

distinctive clinical, pathological and molecular features summarised in Table 2 and 

described in more details below.   

The major clinical sub-types of breast cancer are early breast cancer (including locally 

advanced) [60] and advanced breast cancer [61].  Most of the cases are diagnosed in the 

early stage, when cancer does not spread beyond the regional (axillary) lymph nodes.  

Early breast cancer is subdivided depending on lymph node involvement into lymph-

node-positive (LN+ve) and lymph-node negative (LN-ve) disease, which have different 

clinical management and prognosis.  A small proportion of breast cancers are diagnosed 

at the advanced stage, which is characterised by distant dissemination; treatment and 

prognosis of the advanced breast cancer depends on the degree of dissemination and 

locations of metastases.  Most common locations of breast cancer metastases include 

bones (better prognosis) and viscera (liver, lung or brain), which have less favourable 

outcomes.   

The pathological classifications most widely adopted in clinical practice include  

¶ assessment of invasiveness (invasive vs in-situ cancer),  

¶ histological grading by Bloom-Richardson [62] and  

¶ histological typing of breast tumours developed by the World Health Organization 

[56].   

Invasiveness is based on detection of cancer cells breaking through basal membrane.  

Invasive cancer requires more aggressive treatment, than non-invasive tumours.  The 

Bloom-Richardson score is based on three components: disruption/preservation of 

breast ducts, nuclear morphology and mitotic index.  The score is expressed numerically 

as 1 to 3: grade 1 having most favourable prognosis (preserved ductal structure, good 
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nuclear morphology and low mitotic index) and grade 3 having the poor outcome (no 

ductal architecture, disfigured nuclei and many mitoses).  The WHO histological typing 

is based on integral morphological assessment.  The most common type is invasive 

ductal carcinoma; the other types include non-invasive ductal carcinoma (DCIS), 

lobular, tubular, mucinous cancers and other rare histological types.   

There are some correlations between histological types and molecular features of cancer 

[58].  However, development of targeted treatments requires more direct molecular 

markers informative for activity of specific pathways.  The most useful molecular 

marker in breast cancer is oestrogen receptor (ER).  It has been introduced in 1970th 

[19].  ERs are present in the majority, up to 75%, of breast cancers.  Importantly, in 

many (but not in all) ER+ve cases signalling through the oestrogen receptor is required 

to maintain the tumour growth.  Progesterone receptor (PgR) is used to evaluate 

functional status of oestrogen receptor signalling.  Expression of PgR in breast is 

stimulated by oestrogens.  Thus, presence of PgR on breast cancer cells indicates that  

 

 

Table 2: Classifications of breast cancer 

Clinical types 

 

Early and Locally Advanced Breast Cancer 

Main subtypes according to lymph node involvement (LN+/-) 

Advanced Breast Cancer 

Main subtypes according to location of distant metastases 

Pathological  

classifications 

 

Invasiveness 

Main sub-types: Invasive, In Situ 

Histological type 

Main subtypes: Ductal, Lobular, Tubular etc 

Grade by Bloom Richardson 

Grades 1-3 based on disruption of glandular structure, 

nucleolar morphology and mitotic index 

Molecular  

classifications 

Traditional markers 

Main subtypes: ER+/-, PgR+/-, HER2+/-, Triple-negative 

Intrinsic subtypes 

Luminal A/B, Basal, HER2-Like, Normal-like 
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oestrogen signalling is active.  In contrast, absence of PgR in ER+ve tumours suggests 

that oestrogen signalling may be dysfunctional despite the presence of oestrogen 

receptors.  Majority of hormonal-receptor (ER and PgR) positive tumours respond well 

to endocrine treatment (such as tamoxifen or aromatase inhibitors); none of hormonal-

receptor negative tumours respond to these drugs [63].  HER2 (Human Epidermal 

growth factor Receptor 2) is the last molecular marker that has been incorporated in 

standard clinical practice.  It can be used to guide targeted treatments by Herceptin 

(trastusumab) or other drugs targeting this receptor.  Ki67 is a proliferation marker that 

is currently being proposed for clinical use to complement ER, PgR and HER2 [64].   

Most recently a number of multi-gene biomarkers have been suggested to further 

characterise molecular basis of breast cancers.  One of the most developed molecular 

classifications identifies five major ñintrinsic sub-typesò with different clinical and 

pathological features: luminal A and B (correspond to ER+ve tumours), basal, HER2-

Like and normal-like types (the latter three correspond to ER-ve breast cancers) [65,66].  

While being considered an important milestone in breast cancer research, the intrinsic 

subtypes are yet of limited clinical utility.  Just a few of the multi-gene signatures have 

been approved for clinical use, such as Oncotype Dx and Mammaprint [67,68].  At the 

same time, many studies are being carried out to bring translational multi-gene 

signatures into clinical practice.   

 

Figure 3: Clinical history of breast cancer 

 

Note: Modified from A.Larionov & W.Miller (2009) with authorôs permission [69] 
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Importantly, the cancerôs clinical, pathological and molecular features are not static.  

They change in time along with the cancer treatment and progression.  Figure 3 

illustrates the major clinical events and treatment regimens in clinical history/evolution 

of breast cancer.  Different pathways are involved in tumour progression at each step; 

different treatment regimens and different response/progression criteria are applied at 

different stages of tumour progression [69].   

1.2 Endocrine Treatment and Resistance in Breast Cancer  

1.2.1 Endocrine treatment  

Oestrogen receptors are present in ~75% of breast cancers [19].  Growth of these ER+ve 

tumours usually depends on oestrogen signalling.  Endocrine treatment disrupts or 

prevents this oestrogenic stimulation.  The first example of successful endocrine 

treatment, oophorectomy, has been reported by Beatson in 1896, decades before the 

discovery of oestrogens or oestrogen receptors [70].  Remarkably, oophorectomy is 

successfully used to treat pre-menopausal breast cancer patients till now.  In addition, 

several other modalities of endocrine treatment have been developed during the last 

century; the major modalities of endocrine treatment are illustrated on Figure 4.   

 

 

Figure 4: Endocrine treatment in breast cancer 

 

Note: Reproduced from A.Larionov & W.Miller (2010) with authorôs permission [71]   
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Ovaries are main source of oestrogens in pre-menopause.  Ovarian production of 

oestrogens can be ceased either by surgical removal of ovaries or pharmacologically (by 

GnRH agonists [72]).  Ovarian irradiation is not recommended nowadays because it is 

less reliable and may be associated with adverse side-effects [73,74].  After the 

menopause, ovaries stop producing oestrogens and their blood level dramatically falls.  

However, even the residual low level of oestrogens still is sufficient to support grows of 

ER+ve breast cancers.  In post-menopause, the primary site of oestrogen production 

moves to peripheral tissues, first of all ï to adipose tissue [75].  Adipose tissue 

expresses very low levels of aromatase (the key enzyme of oestrogen biosynthesis).  

However, because of the bulk of the tissue in the body it can produce sufficient amount 

of oestrogens to stimulate growth of breast cancer.  Aromatase inhibitors (AIs) are used 

to block the peripheral oestrogen production in post-menopause.   

Instead of preventing oestrogen production, the alternative approach is to block 

oestrogen signalling through oestrogen receptors.  For instance, Tamoxifen, the first 

successful targeted treatment in oncology, inhibits breast cancer growth by competing 

with oestrogens for binding to oestrogen receptors [76].   

1.2.2 Endocrine resistan ce 

Despite the success of endocrine treatment in general, its effectiveness vary in 

individual patients.  About 30% of ER+ve cases do not respond to endocrine treatment 

despite the presence of oestrogen receptors (primary endocrine resistance).  Many of 

those who initially respond develop the resistance later (acquired resistance) [77,78].  

Clinical management of endocrine resistant cases usually includes an attempt to 

administer another modality of endocrine treatment and/or add cytotoxic and other 

targeted agents [71].  In fact this tactics is rather ex-juvantibus trial-and-error approach 

than a rational attempt to overcome the resistance basing on a knowledge of the 

molecular mechanisms underlying growth of the resistant tumour. 

Multiple causes for endocrine resistance have been suggested.  Causes residing outside 

of the tumour may include inaccuracy in ER assessment [79], poor adherence to 

treatment [80] and adverse drug metabolism [81].  Many specific molecular 

mechanisms acting within the tumour cell have also been suggested, which will be 
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discussed later [77,82,83].  Figure 5 illustrates the main steps in oestrogen-stimulated 

tumour growth.  Resistance to treatment can develop at each step, for instance:  

A) Inhibition of oestrogen biosynthesis by AIs may be inefficient because of 

inherited polymorphisms in aromatase gene [84,85]; 

B) Effective inhibition of oestrogen biosynthesis may be compromised by 

exogenous oestrogenic compounds (e.g. dietary phytoestrogens or oestrogenic 

industrial phenolic pollutants) [86,87]; 

C) Aberrations and ligand-independent activation of oestrogen receptors may 

influence response to endocrine treatment [88,89] 

D) Cross-talk with growth factors may enhance ER-signalling and ER-driven 

proliferation [90]; 

E) ER-driven proliferation may co-exist with ER-independent proliferation 

mechanisms in ER+ve breast cancers [83]; 

F) Apart of the proliferation, tumour growth depends on apoptosis, vascularisation 

and other processes, which may contribute to endocrine resistance and response 

[91,92].   

1.2.3 Intratumoral  molecular mechanisms of endocrine 

resistance  

The last four steps on the above figure refer to intratumoral mechanisms of endocrine 

resistance.  Because this project deals with molecular profiles of tumour biopsies, the 

intratumoral mechanisms of endocrine resistance require a detailed attention.  Examples 

of the major intratumoral molecular events that may cause endocrine resistance are 

highlighted in Figure 6 and discussed below.  

 

Figure 5: Steps in oestrogen-stimulated tumour growth 

 

Note: Modified from W.Miller & A.Laronov (2012) with authorôs permission [77] 
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1.2.3.1 Ligand-independent activation of ER and hyper -sensitivity to 

low concentrations of oestrogens  

 

Upon binding to oestrogens ERs undergo dimerization and nuclear translocation.  

Within the nucleus ER act as a nuclear factors binding to oestrogen-regulated elements 

(ERE) and changing expression of the oestrogen-regulated genes.  Binding to EREs 

requires co-regulators (AP1, NCOA1-4 and others).  It has been suggested that 

overexpression of these co-regulators may lead to hyper-sensitivity to low 

concentrations of oestrogens or even may cause oestrogen-independent activation of the 

ER- signalling [93].  Alternatively, oestrogen-independent activation of ERs may occur 

because of phosphorylation of ERs, caused by growth-factors dependent intra-cellular 

kinases as a part of crosstalk between growth factors and oestrogen signalling [90,94]. 

 

 

 

Figure 6: Selected molecular mechanisms of endocrine resistance 
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1.2.3.2 Cyclins and other cell cycle regulators  (CCND1, CCNE) 

A number of cell cycle regulators acting downstream of ERs have been linked to 

endocrine resistance [95].  Cyclin D (CCND1) is a commonly known oncogene often 

amplified in breast cancer and other cancers [96].  Cyclin D gene (CCND1) 

amplifi cation is present in ~20% of breast cancer cases; the overexpression of Cyclin D 

protein is observed in about a half of breast tumours [97,98].  Cyclin D plays an 

important role in G0-G1-S transition during the cell cycle.  Therefore its increased 

activity may be directly associated with high proliferation and poor outcome.  However, 

attempts to verify this hypothesis in breast cancer were inconclusive.  While there are 

observations supporting this model [99], there are also observations apparently 

contradicting to it: when overexpression of Cyclin D protein was associated with ER-

positivity and good prognosis [97].  This controversy may be explained by the fact that 

CCND1 is a known ER target [100].  Therefore, high expression of Cyclin D1 protein in 

ER+ve cancers in absence of the gene amplification may be indicative of the estrogen-

dependent growth, which is likely to respond to endocrine treatment and have a good 

prognosis.  In contrast, the autonomous (ER-independent) Cyclin D1 activity may cause 

endocrine resistance [101].  The latter case is likely to be observed if high Cyclin D 

protein expression follows CCND1 gene amplification.  Indeed, amplification of 

CCND1 gene is linked with poor prognosis and poor results on endocrine treatment 

[102,103].  Therefore, CCND1 provides a good example illustrating how proteomic, 

transcriptomic and genomic data shall be analysed together to decipher molecular 

mechanisms of endocrine resistance (Figure 7).  To observe the whole picture one shall 

also take into account several other genes, which may be co-amplifyed with CCND1 

[104,105].   

Figure 7: Proposed interpretation of  Cyclin D expression and amplification in 

breast cancer  
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Endocrine resistance can also be associated with other cell cycle regulators, acting 

downstream of Cyclin D.  For instance it has been shown that overexpression of 

Cyclin E (CCNE1) or itôs truncation by a specific protolithic cleavage can cause 

endocrine resistance by bypassing cell cycle arrest induced by endocrine treatment 

[106-109].  

1.2.3.3 Cross-talk between ER and growth factor s signalling  (HER2) 

A number of molecular pathways commonly associated with carcinogenesis may 

interact (cross-talk) with oestrogen receptor signalling.  HER2 (Human Epidermal 

growth factor Receptor 2) pathway is the most studied example of such interaction 

because HER2 is amplified in a noticeable fraction of ER+ve tumours and there are 

drugs targeting HER2 signalling [110,111].  HER2 amplification in ER+ve tumours is 

associated with poorer results on endocrine treatment [110,112].  This can be explained 

either (i) by a direct effect of HER2 on proliferation (through PI3K-AKT-mTOR or 

RAS-ERK/MAPK cascades) or (ii) by ER-HER2 interaction [90].  The interaction is 

bidirectional.  On one hand, AKT can activate ER by phosphorylation; on the other 

hand, the rapid effects of oestrogens mediated by plasma membrane ERs can cause 

EGFR - AKT cascade activation [83].   

1.2.3.4 Other mechanisms 

A number of other molecular mechanisms have also been implicated in endocrine 

resistance.  These mechanisms involve nuclear factors (e.g. NFkB, MYC [113-115]), 

micro-RNAs (e.g. mir9, 221, 222 [116,117]) and molecular determinants of apoptosis 

(e.g. P53, BCL2, CASP8 [118,119]).  Importantly, the endocrine resistance mechanisms 

closely interact with each other: micro-RNAs being in control of ER or cell cycle 

regulators, apoptosis being regulated by oestrogen signalling, etc.  The combination of 

mechanisms may differ in each individual tumour.   

1.3 Transcript ional signatures  in endocrine resistance  

Despite the bulk of experimental and observational data on molecular mechanisms of 

endocrine resistance, there are yet no clinically useful biomarkers to predict endocrine 

resistance in ER+ve patients and there is no rational approach to overcome the 

resistance.  One of the strategies to address this shortage is to seek multi-gene 
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transcriptional signatures associated with specific mechanisms of resistance and with 

clinical outcomes.   

1.3.1 Sample collection  

The signatures can be derived from high-throughput transcriptomic studies carried out 

on either clinical samples or on experimental models.  The experimental models use cell 

cultures and laboratory animals.  The cell lines studied are usually ER+ve cell lines (e.g. 

MCF-7, T47D, BT474 or ZR-75, [120,121]) incubated with tamoxifen or long-term 

oestrogen deprived (to model resistance to aromatase inhibitors, [122]).  Alternatively, 

cell lines may be transfected with genetic constructs to monitor oestrogenic signalling 

or to modify cell growth or production of oestrogens [123,124].  Experimental animals 

may be used as hosts for xenografts [125].  Alternatively these may be animals with 

induced breast carcinomas or genetically modified animals, e.g. mice with conditional 

knockout or overexpression of aromatase [126].  The main advantage of experimental 

models is that they allow functional interventions to study causal relations at the 

molecular level.  The main disadvantage is that experimental findings may be of low 

relevance to clinical tumours and treatments.  For instance, the experimental models 

poorly reflect clinical treatment dosages and settings, specifically ï the biology of most 

common adjuvant setting, when treatment is directed at micro-metastatic and dormant 

disease.   

The collection of tumour samples often accompanies breast cancer clinical trials or 

treatment audits [127].  Findings based on these clinical tumour biopsies may be 

directly translated to the clinic.  However, a series collection may take years, a biopsy 

size is limited and no experimental interventions are possible to study the causal 

relations in molecular findings.  When comparing transcriptomic datasets obtained in 

different clinical studies it is important to pay attention to the technical details, 

including studied populations, treatment settings and dosages, criteria for response 

assessment, biopsy techniques and microarray platforms.  The main features 

characterising the studied population, treatment and response assessment have been 

discussed above (Table 2, Figure 3).  In addition, it may be important to evaluate age, 

ethnicity and reproductive status of patients.   
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The biopsy techniques used in breast cancer transcriptomic studies include fine needle 

aspirates (FNA), core biopsies and excision biopsies.  The tissue may be preserved by 

freezing in liquid nitrogen or by fixation in formalin and paraffin-embedding (FFPE 

blocks).  Because FNA samples provide an extremely small amount of material, they 

may often be non-informative and/or be poorly representative for the intratumoral 

heterogeneity.  Core biopsy is a common procedure in the breast cancer clinic; usually it 

is well tolerated and can be taken sequentially.  Core biopsies provide sufficient 

material for modern transcriptomic methods (up to 25-100mg of tissue).  However, it 

may not be enough for a repeated analysis, if the initial attempt has failed.  Excision 

biopsies or tumour samples obtained at surgery usually are large (up to 1 gram and 

more); usually excision biopsies cannot be collected sequentially, e.g. before and after 

certain treatment.   

Until recently, most transcriptional studies were conducted on frozen samples, as RNA 

is severely degraded in FFPE blocks.  Recent progress in molecular techniques has 

allowed PCR analysis on FFPE blocks; however, fresh frozen samples are still 

preferable for the high-throughput microarray techniques.  FFPE samples may be stored 

in archives for decades.  Thus, when analysing transcriptional data obtained on FFPE 

blocks it is important to be aware of the age of blocks and of the storage conditions.   

1.3.2 Microarray platforms  

Several microarray platforms have been used in transcriptomics studies in breast cancer.  

Early seminal studies were conducted more than a decade ago using in-house spotted 

microarrays [65,66].  The experiments included several steps.  First RNA was extracted 

from studied samples, labelled (e.g. by fluorescent labels) and hybridised to the arrays.  

Then the arrays are scanned: if a specific mRNA was present in the sample, then the 

corresponding spot showed fluorescence.  This general experimental workflow is still 

used in present-day microarray studies.  However, the array manufacturing, sample 

preparation and labelling have been significantly improved.  Nowadays the in-house 

spotted arrays would be considered sub-standard because of relatively low number of 

spots and low accuracy of the in-house spotting.  Contemporary studies use commercial 

arrays, with Affymetrix and Illumina being the leading microarray manufacturers.   
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1.3.2.1 Affymetrix arrays  

Instead of spotting the probes to arrays Affymetrix synthesises the probes in-situ.  A 

combination of photolithography and oligonucleotide chemistry allows manufacturing 

of very high density arrays (10-20 microns per ñspotò) with precise location of each 

ñspotò [128].  Because the in-situ synthesis becomes less accurate for longer 

oligonucleotides, Affymetrix arrays use multiple short (~25 nucleotides) oligos to 

overlap within the larger target area (Figure 8).  Importantly, each oligo is designed in 

two versions: perfect match and single mismatch.  To ensure specificity of the results 

the original Affymetrix algorithms for data analysis (MAS4 and MAS5) recommend 

comparison of signals obtained from the perfect match and mismatch probes.   

1.3.2.2 Illumina arrays  

The Illumina technology is a ñBeadArrayò.  In contrast to Affymetrix, Illumina does not 

synthesise the probes in-situ; neither Illumina spots probes on the array.  Instead 

Illumina attaches probes to small beads (~ 2-3 microns in diameter, ~800k of oligo 

copies per bead).  This design allows the use of long probes (~50nucleotides).  The 

beads are spread over the array surface, which has special wells for regular 

accommodation of the beads.  The beads allocation is random.  However, it is decoded 

 

 

Figure 8: Design of Affymetrix array probe sets 
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after the array manufacturing [129].  The decoded beads map is supplied in a DMAP 

file that is unique for each the chip.  In addition the decoding procedure provides an 

individual quality control for each chip manufacturing.  Illumina technology allows 

placing many tens of thousands of beads per array, which is higher density than 

achieved by Affymetrix.  Such high number of features allows for redundancy: 

allocating several identical bead types per array (~15 on average) increases the 

reliability of measurements.   

1.3.2.3 Comparison of data from different micro -array platforms  

Apart of Affymetrix and Illumina the commercial microarray manufacturers include 

Agilent (spotted arrays), Nimblegen (Roch, in-situ synthesised arrays) and others.  

While the results obtained by different microarray platforms usually are similar 

[130,131], the direct comparison or integration of microarray data obtained on different 

platforms requires special precautions (see section on batch-correction and cross-

platform integration below [132]).   

1.4 Bioinformatics pipeline  in transcriptomics  

The raw data produced in microarray experiments include images generated by the array 

scanners, experimental annotations and meta-data.  Interpretation of the raw data relies 

on complex bioinformatics procedures, which include a large number of relatively 

independent steps.  Multiple legitimate options are available for each step of analysis.  

These options need to be tuned to specific dataset and study design.  The robust result 

shall be confirmed using different alternative options applied to the same dataset.  This 

section will describe the common bioinformatic tasks performed during gene expression 

microarray data analysis.   

1.4.1 Microarray scanning  and source data file  types 

Prior the further analysis, the scanned microarray images have to be converted to 

numerical values representing the intensity of spots [133,134].  Affymetrix scanners 

save data in a proprietary file format (DAT files), which can be rendered as image using 

specialised software including own Affymetrix tools and some R- or Matlab packages.  

A single probe spot on Affymetrix raw images is ~ 10x10 pixels, only the central 8x8 

being used for intensity measurement.  The DAT files are converted to CEL files for 
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further analysis.  CEL files summarise information for each spot on the image.  CEL 

files may also be rendered as pseudo-images.  However, the pseudo-images generated 

from CELs represent each probe as a single pixel, instead of the true images available 

only from DAT files.  Conversion of CELs to probesetsô expression values requires 

information about chip design, provided in CDF (Chip Description File) files [135].   

Illumina scanners also produce several file types.  The original images are saved in 

TIFF files, containing ~17x17 pixels window around each bead.  Only the central 9 

pixels are used for intensity measurement, the peripheral pixels are used as local 

background.  The corrected spots intensity data are stored in TXT files, which are 

translated to the bead type intensities (IDAT files) using mapping, available in DMAP 

files.  Finally the bead intensity data are translated to probes intensities, using the 

manifest files, available from Illumina (e.g. BGX files, [136]).  It may be noted that 

folders with ñrawò data generated by Illumina GenomeStudio software may contain 

different files sets, depending on the user-customised settings.  The folder often may 

contain JPEG images for each array.  However, the size of JPEG files is quite small, 

suggesting that they are just thumbnails based on processed data, like the pseudo-

images generated from Affymetrix CEL-files.   

 

 

Figure 9: Affymetrix and Illumina source data files  

 

Notes: Blue boxes show raw image data files, green boxes show processed image data 

files, grey boxes show files with additional information about chip design, provided by 

the manufacturer.  Because of constant technology development, some figure details 

(e.g. file extensions) may be different for different Affymetrix and Illumina products.   
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The summary of Affymetrix and Illumina microarray dataflow from scanning to the 

typical files used in the downstream analyses is illustrated on Figure 9.   

Usually the summarised intensity values are obtained using the manufacturerôs 

proprietary software supplied with the scanner.  In contrast, the downstream analysis of 

the summarised intensities is often performed using appropriate R-packages, which 

provide greater flexibility and transparency.  For instance, Affymetrix CEL files can be 

read by Affy R-package [137]; text files exported by Illuminaôs GenomeStudio can be 

read by Lumi R-package [138].  Currently Illumina encrypts IDAT files to encourage 

generating of summarised probe intensities by GenomeStudio.  However, there are R-

packages that can read the encrypted IDAT files (for instance IDATreader).  

Alternatively there are R-packages able to read the true image-level data; for instance, 

Beadarray R-package can import TIFF/TXT Illumina files [139].   

1.4.2 Microarray d ata repositories and  reporting standards  

As well as our own datasets, this project re-analyses several publicly available datasets.  

It is a common academic practice to share the raw data of microarray experiments.  This 

is required for by most of the journals publishing results of such studies.  There are 

several publicly available and publicly maintained repositories, which are used for the 

microarray data sharing.  The two most popular repositories are Gene Expression 

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/ [140]) and ArrayExpress ( 

http://www.ebi.ac.uk/arrayexpress/ ).  In addition to storing the data, these repositories 

provide convenient interface for datasets searching and some basic analyses.  The 

repositories exchange the information between each other: thus a dataset submitted to 

GEO will be soon available through the ArrayExpress too.  The repositories accept only 

data satisfying to the Minimum Information About a Microarray Experiment (MIAME) 

requirements [141].  These include not only the data themselves, but also information 

on the main factors influencing interpretation of the data: design of the experiment, 

description of samples, array design, hybridisation and normalisation procedures.   

1.4.3 Pre-processing  

A typical Affymetrix or Illumina microarray experiment includes several samples, each 

of them hybridised on a separate chips.  To compare measurements made on the 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
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different chips they need to be pre-processed.  Pre-processing includes background 

correction, normalisation, summarising, batch-correction and filtering.   

Background correction at this step accounts for global (RMA) or local (Loess) biases in 

expression values.  This does not substitute the background correction performed during 

the image analysis, which accounts for peripheral pixels in the spots.   

Affymetrix probesets consist of multiple probes (Figure 8), which intensities have to be 

summarised to produce the overall probeset expression value.  Additionally, Affymetrix 

provides the perfect match/ mismatch probes, which may also be integrated at the 

summarisation step (an example of a platform-specific pre-processing).  Illumina arrays 

carry multiple beads carrying the same probe.  Their intensities also shall be 

summarised to produce a single expression value for each bead type.   

The basic assumption underlying the normalisation step is that the average expression 

over all genes shall be similar on each array.  In practice, the normalisation procedures 

are based on more advanced assumptions, e.g. that the distribution of genes expressions 

shall be similar between arrays (quantile normalisation) and may include some 

empirically justified corrections (MAS algorithms).   

Multiple R-packages can be used to perform the array pre-processing.  The most 

popular R-packages for Affymetrix data are Limma and Affy [137,142].  Beadarray and 

Lumi R-packages can be used for Illumina arrays pre-processing [138,139].  In practice 

the background correction, summation and normalisation are often performed 

simultaneously, using integrated functions available in the chosen R package [143].  

Thus, mas5() function from Affy package can be used to perform all pre-processing 

steps according to Affymetrixôs MAS5 algorithm. Beside to the MAS5 algorithm, 

expresso() function from the same package may also perform Robust Multichip 

Average (RMA) background correction, Loess or Quantile normalisation and 

Medianpolish or Liwong summation algorithms [144].  Similar options are available in 

other R packages for Affymetrix and Illumina pre-processing.   

The filtration step in pre-processing is used to remove non-informative probes, for 

instance: probes that are not expressed at all or do not change noticeably between the 
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arrays.  Another example of filtration is selecting 500 most variable probes in the array 

(this is based on assumption that the most variable probes are the most informative).   

Finally, the pre-processing may include batch-correction.  Large transcriptomic studies 

associated with breast cancer clinical trials may collect samples over several years and 

process them in batches.  It has been shown that even after baseline correction, 

summation and normalisation the data may still keep strong batch-specific bias [145].  

There are several methods to minimise the batch effect.  The simplest method uses 

median-centring [146].  Importantly, it is applied in a different dimension than in the 

normalisation: the assumption is that average expression of each gene shall be similar in 

each batch.  Like in the normalisation, this simple principle may be developed into more 

sophisticated algorithms, including empirical Bayesian calculations (ComBat correction 

[147]).  It shall be noted that any batch-correction method is removing differences 

between the batches.  Thus, to avoid removal of legitimate meaningful differences the 

composition of batches shall be balanced.  For instance, developing a signature for 

endocrine resistance in breast cancer, each batch shall include approximately similar 

proportion of resistant and responsive tumours.   

An important specific case is when different batches are studied using different 

microarray platforms.  In addition to a specialised batch-correction procedures (e.g. 

Cross-Platform-Normalisation, XPN [132]) the inter-platform integration requires 

probes matching between the platforms, which may not be a trivial procedure [148,149].   

1.4.4 Tumour classification using multi -gene signatures  

This project is focused on the application of multi-gene signatures for classifications of 

endocrine-resistant breast tumours.  Development and application of multi-gene 

classifiers involve several typical steps illustrated on Figure 10 [150].  Initial un-

supervised exploratory analysis is needed to acquire familiarity with the data.  It may 

also include additional quality control checks.  The intrinsic sub-classes may be related 

to known clinical and pathological parameters.  The next common step is to derive lists 

of features differentially expressed between the studied groups (e.g. responders and 

non-responders to treatment).  Finally, these features are used to construct a 

classification algorithm, which can be used to predict the class of the newly collected 

tumours.   
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1.4.4.1 Exploratory analysis  

Exploratory analysis includes descriptive statistics, quality controls and un-supervised 

class discovery procedures, like Hierarchical Clustering Analysis (HCA) or Principal 

Component Analysis (PCA).   

Descriptive statistics provide important information for quality control purposes.  For 

instance, percentage of ñdetectedò genes on array or average intensity of top and bottom 

5% of genes can be used as quality control metrics.  Labelling procedures utilised on 

older arrays often were sensitive to RNA degradation, which could be monitored by 

special control probes located at 3ô and 5ô regions of the genes. 

Clustering is a group of methods that allocate similar cases close to each other.  The 

degree of similarity may be calculated using different distance measures, the actual 

allocation of similar cases into clusters can be done using different 

agglomeration/linkage algorithms.  Selection of the distance measure and linkage 

algorithm may drastically influence the clustering result.  Most common distance 

measures include Euclidian distance, Manhattan distance or Correlation coefficient 

between samples.  Influence of distance measures on HCA is illustrated on Figure 11A.  

Examples of the linkage algorithms include Complete, Average or Single linkages, as 

illustrated on Figure 11B.  Clustering in transcriptomics is usually coupled with 

heatmap figures that show genes expressions in studies cases.  One of the main 

advantages of HCA is that combining bi-clustering of genes and cases with the heatmap 

allows quick visual assessment of what genes are up- or down- regulated in different  

 

 

 

Figure 10: Development of a multi-gene classifier 
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tumour groups.  The disadvantage is that clustering is sensitive to the noise originating 

from low-informative variables (unless low weights are assigned to such variables 

during the clustering).  

Principal component analysis is an alternative to HCA class discovery technique.  Its 

main advantage over HCA is that PCA effectively deals with the redundant or low-

informative genes reducing the multidimensional space of all initial variables to a 

smaller number of highly-informative principal components (PCs).  Plotting cases 

within the space of 2 or 3 most informative principal components allows visualising 

sub-groups within the studied dataset.  The disadvantage of PCA is that it hides 

biological identities of the genes, contributing to the groupsô separation.   

1.4.4.2 Informative feat ures selection  

Exploratory analysis is useful for acquainting with the data and for familiarising with 

the data inner structure.  However, it is not directly informative for derivation of the 

multi-gene signatures, which can be used for tumours classification.   

In the present study we will use signatures associated with different mechanisms of 

endocrine resistance, for instance: transcriptional signatures associated with P53 

mutations, PTEN loss or HER2 amplification.  These signatures include genes, which 

expressed differently between the tumours with and without the studied feature (e.g. 

with and without HER2 amplification).   

 

 

Figure 11: Effects of Distance Measure and Linkage Algorithms on Clustering 

 

 
 

     A: Distance measures     B: Linkage algorithms 
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The simplest methods for selection of differentially expressed genes are based on 

classical statistics: (i) first expression of each gene is compared in the studied groups 

(using for instance t-test or Wilcoxon-Mann test); (ii) then the genes are ranked 

according to the p-value for the difference; (iii) finally a certain number of the top 

differentially expressed genes are taken further to design a classifier.   

Having sufficient number of observations, application of the classical statistical 

methods produces proper ranking of the informative genes.  However, the actual p-

values may be misleading because the classical tests have been developed for single 

experiments.  The microarrays measure many thousands of genes at a time.  Applying 

p<0.05 criteria to such number of measurements will produce tens or hundreds of 

ñsignificantlyò changed genes merely by chance.  A number of multiple testing 

corrections have been suggested to address this problem.  The simplest method is the 

Bonferroni correction, which merely multiplies the classical p-value by the number of 

tested genes.  This is a very strict correction, which may exclude many significantly 

changed genes for not to include any false-discovered ones.  An alternative approach is 

to explicitly allow some specific false-discovery rate (FDR, e.g. 20%) for the sake of 

keeping all genuinely changed genes for downstream analysis. 

Apart of the misleading p-values, the direct application of classical statistics to 

microarray data may have some other limitations.  To overcome these limitations, a 

large number of specialised and highly sophisticated methods have been suggested for 

selection of differentially expressed genes in microarray experiments [151-156].  The 

specialisation comes at a price of transparency.  Different methods produce different 

lists of genes.  Even repetition of the same method may produce different results 

because of randomisation incorporated in some methods.  Theoretically, it is legitimate 

to have multiple equally informative multi-gene signatures [152].  However, high 

complexity and lack of transparency may lead to sub-optimal tuning of the sophisticated 

methods.  It was observed that some differentially expressed genes derived by a 

specialised procedure may be of low median fold change and of low consistency of 

changes (Figure 12 [157,158]).  Thus, to ensure the quality of gene lists produced by 

highly specialised methods, it is recommended to explore genes using conventional 

descriptive statistics, prior taking them to the downstream analyses.   
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1.4.4.3 Classification algorithms  

To classify tumours using informative features selected at the previous step the features 

shall be interpreted by a classification algorithm.  The same features can be used in 

different classification algorithms [159].  Prior to classification of the new cases, the 

algorithms shall be trained on the dataset with known allocation of cases.   

Some of the algorithms are building on the methods described earlier for exploratory 

analysis.  Thus, Figure 13 illustrates principles of Linear Discriminant Analysis (LDA) 

and Support Vector Machine (SVM) classification algorithms, which build on the PCA 

analysis.   

LDA evaluates position of the training cases within the space of the most informative 

latent variables (principal components) and draws a linear border, which best separates 

 

 

Figure 12: Comparison of a specialised analysis with consistency and amplitude of 

change 

 

Notes: Modified from Miller W, Larionov A. et al 2010 with authorôs permission [158].   

Figure shows genes down-regulated on treatment.  The specialised analysis was based 

on statistical significance of changes assessed by linear modelling in paired samples 

with empirical Bayesian adjustment for multiple testing.   
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the groups.  Classification of the new case is decided depending on which side of the 

border it lays.  In practice, the border may not be linear.  It also may be that cases 

closest to the border are more important for the exact demarcation of the borderline.  

These considerations are taken into account by SVM algorithm, which draws non-linear 

borders basing only on selected cases from the training set (so called ñsupport vectorsò).  

Examples of other classification algorithms include nearest neighbour method, network-

based classifications (including Bayesian networks), Hidden Markov models, pattern 

recognition, clustering around centroids and stepwise classification methods [159-162].   

It may be noted that all these algorithms produce discrete classifications assigning each 

case to one of the groups.  The quality of the discrete classification algorithm can be 

assessed by overall accuracy of classification or by its sensitivity and specificity; in 

some cases, receiver operating characteristic (ROC) plot can be used for assessment and 

tuning of discrete (binary) classifiers.   

Along with the allocation of the case to a class it may be important to provide the 

degree of confidence for the allocation, e.g. the probability of the assigned outcome.  

This probability is naturally available when classification is based on logistic regression 

 

 

Figure 13: Principles of LDA and SVM classification algorithms 

 

 

A: Linear Discriminant Analysis (LDA)            B: Support Vector Machine (SVM) 
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 (Figure 14).  Similarly, a probability of outcome may be based on empirical data, as 

implemented in Oncotype-DX [67].  An advantage of the probability-based 

classification algorithms is that they allow assigning of the ñnon-classifiableò call, when 

the probability of either outcome is not high enough.   

When a classification algorithm is trained to successfully classify cases in the training 

set it may be over-fitted to artificial or random features of the training set, instead of 

recognising important biological determinants underlying the classes differences.  The 

risk of over-fitting is specifically high for classifications based on microarray data, 

where number of features (genes) is much higher than number of cases (tumours).  A 

common approach to avoid this over-fitting is to train the algorithm on sub-sets drawn 

from the training set, using the excluded cases for assessment of the algorithm (e.g., 

leave-one-out test or bootstrapping [163]).  Another way to reduce the risk of over-

fitting is to reduce the number of features (genes), agglomerating them or using only the 

most informative ones, which are additionally supported by biological evidences.  

Because of the over-fitting, the accurate assessment of a multi-gene signature can be 

performed on an independent validation dataset.   

 

 

Figure 14: Example of a probabilistic classification based on logistic regression 

 

Note: Reproduced from A.Larionov & W.Miller (2010) [71] with authorôs permission 










































































































































































